Konus
Ortga
10586
2020-04-15
Saqlash
Ulashish
Geometriya 10-sinf
Mavzu: Konus
Matn: Konus (yun. konos — dubulgʻa uchi) — yopiq konus sirt va uni hosil qiluvchilarni kesuvchi S uchidan oʻtmaydigan tekislik bilan chegaralangan geometrik jism. Tekislikning K. sirt ichida joylashgan qismi K.ning asosi deyiladi. K. sirtning uchi va K. asosi bilan chegaralangan qismiga K.ning yon sirti deyiladi. Agar K.ning asosi doiraviy boʻlsa, K. doiraviy K. deyiladi. S uchi shu doiraning markaziga proyeksiyalansa, K. toʻgʻri doiraviy K. deyiladi, SO kesma esa K.ning balandligi deyiladi (rasm). Toʻgʻri burchaqli uchburchak oʻzining biror kateti atrofida aylantirilsa, toʻgʻri doiraviy K. hosil boʻladi. Toʻgʻri doiraviy K.ning yon sirti SiH = nRL, hajmi V = -^-irr~h formula bilan hisoblangan, bunda: L yasovchisi, R — K. asosining radiusi, h — K. balandligi. K.ni uning asosiga parallel yana bir tekislik bilan kesilsa, kesik K. hosil boʻladi. Uning yon sirti SiH = n(R + r), hajmi V — u 7g( R + — K. +rL+Rr)h, formula bilan topiladi, bunda R, g — kesik K. asoslari radiusi, h — kesik K. balandligi, / — kesik K. yasovchi.
Mavzu: Konus
Matn: Konus (yun. konos — dubulgʻa uchi) — yopiq konus sirt va uni hosil qiluvchilarni kesuvchi S uchidan oʻtmaydigan tekislik bilan chegaralangan geometrik jism. Tekislikning K. sirt ichida joylashgan qismi K.ning asosi deyiladi. K. sirtning uchi va K. asosi bilan chegaralangan qismiga K.ning yon sirti deyiladi. Agar K.ning asosi doiraviy boʻlsa, K. doiraviy K. deyiladi. S uchi shu doiraning markaziga proyeksiyalansa, K. toʻgʻri doiraviy K. deyiladi, SO kesma esa K.ning balandligi deyiladi (rasm). Toʻgʻri burchaqli uchburchak oʻzining biror kateti atrofida aylantirilsa, toʻgʻri doiraviy K. hosil boʻladi. Toʻgʻri doiraviy K.ning yon sirti SiH = nRL, hajmi V = -^-irr~h formula bilan hisoblangan, bunda: L yasovchisi, R — K. asosining radiusi, h — K. balandligi. K.ni uning asosiga parallel yana bir tekislik bilan kesilsa, kesik K. hosil boʻladi. Uning yon sirti SiH = n(R + r), hajmi V — u 7g( R + — K. +rL+Rr)h, formula bilan topiladi, bunda R, g — kesik K. asoslari radiusi, h — kesik K. balandligi, / — kesik K. yasovchi.
Havola bilan ulashish




